Damage density of Damascus, Kafr Batna and Irbin subdistricts, Damascus Governorate, Syria

This map illustrates satellite-detected damage density in the subdistricts of Kafr Batna and Irbin and in the eastern part of Damascus city, Syrian Arab Republic. Using satellite imagery acquired 3 December 2017 and 2 April 2016, UNITAR - UNOSAT identified a total of 12,541 affected structures. Approximately 3,853 of these were destroyed, 5,141 severely damaged, and 3,547 moderately damaged. Comparison with the previous UNOSAT analysis using imagery from 2 April 2016 shows an overall increase of 6% in the number of damaged buildings since 2016. The areas with a higher increase in the percentage of damage are Ein Tarma (14% increase), Hammura (15% increase) and Kafr Batna (17% increase). Moreover, approximately 7% of the buildings damaged as of April 2016 have been targeted again and suffered additional damage. The majority of these buildings are located in Ein Tarma, Jobar and Al Maamouniye. This is a preliminary analysis and has not yet been validated in the field. Please send ground feedback to UNITAR - UNOSAT.

Legend
- Analysis extent
- Neighborhood boundary
- City boundary
- Primary road
- Secondary road
- Local road
Damage Site Density Index
- High
- Low

Map Scale for A3: 1:23,000

Analysis conducted with ArcGIS v10.4.1
Coordinate System: WGS 1984 UTM Zone 37N
Projection: Transverse Mercator
Datum: WGS 1984
Units: Meter
Analysis extent
Neighborhood boundary
City boundary
Primary road
Secondary road
Local road
Damage Site Density Index
High
Low

Analysis Extent

See inset for close-up view of damaged & destroyed structures

The depiction and use of boundaries, geographic names and related data shown here are not warranted to be error-free nor do they imply official endorsement or acceptance by the United Nations. UNOSAT is a program of the United Nations Institute for Training and Research (UNITAR), providing satellite imagery and related geographic information, research and analysis to UN humanitarian & development agencies & their implementing partners. This work by UNITAR-UNOSAT is licensed under CC BY-NC 3.0.